Untangling the cellular origins of viruses

Computing the early history of biochemistry and life

Gustavo Caetano-Anollés

University of Illinois, Urbana-Champaign, Illinois, USA

DNA habitats and its **RNA** inhabitants 3 - 5 July 2014 Salzburg - Austria Viruses, Mobile Genetic Elements, Viroids, Introns, Ribozymes and other RNAgents

Retrodictive exploration

3D STRUCTURE

QUESTIONS:

What is the role of viruses in cellular evolution? Is there a truly universal tree of life? Are viruses monophyletic or polyphyletic? How are viral groups related to each other? Is there a preferential direction of gene transfer?

Ideographic framework historical and retrodictive Structure provides a window into function and evolution

The macromolecular world is modular

Modules carry deep evolutionary signal

Evolutionary conservation increases with hierarchical complexity

Domains exhibit levels of structural abstraction

Modularity increases in evolution

Domain diversity (occurrence) and **reuse (abundance)** in proteomes carry **strong and deep phylogenetic signal**

Module diversity and reuse increase in evolution, even if domains are universal Kim and Caetano-Anollés (2012) BMC Evol Biol 12: 13

Retrodictive exploration

Structural phylogenomics

COMPUTING THE HISTORY OF THE PROTEIN WORLD:

Genomic demography and phylogeny reconstruction

Structural phylogenomics

COMPUTING THE HISTORY OF THE PROTEIN WORLD:

Recent applications

Coevolutionary history of the ribosome

Harish and Caetano-Anollés (2012) *PLoS ONE* 7: e32776 Caetano-Anollés and Sun (2014) *Front Genet* 5: 127.

Origin of the genetic code in protein flexibility

Caetano-Anollés et al. (2013) *PLoS ONE* 8: e72225 Debes et al. (2013) *PLoS Comput Biol* 9: e1002861

Origin of viruses

Caetano-Anollés 2014©

Three main lines of thought about three main events of emergence

Nasir et al. (2012) Mobile Genet Elements 12:156

V : Origin of viruses

C : Origin of cells

L : Origin of diversified cells*

Last universal cellular ancestor [LUCELLA]

The root of the 'universal' tree of life

Trees of proteomes and evolutionary PCA analyses derived from fold superfamilies (FSFs) place the root of the tree in VIRUSES with large-to-medium size genomes Nasir et al. (2012) BMC Evol Biol 12:156

The root of the 'universal' tree of life

The ancient cellular origin of viruses supports the 'reductive' evolution hypothesis and redefines urancestors of life

Nasir et al. (2012) Mobile Genet Elements 12:156

LUCA: Last universal common ancestor **LUCELLA:** Last universal cellular ancestor

The root of the 'universal' tree of life

Two organic-walled microfossil size ranges: **5-90 μm** (Pilbara Craton, Western Australia) **50-300 μm** (Moodies Group, South Africa)

Sugitani et al. (2007) *Precamb Res* 158: 228-226 Sugitani et al. (2009) *Astrobiology* 9:603-615 Javaux et al. (2010) *Nature* 463:934-938 Wacey et al. (2011) *Nature Geosci* 4:698-702

Expanded proteome dataset

2,715 proteomes from all 6 viral groups [NCBI RefSeq Viral Resource]

- $_{\circ}$ 1,125 dsDNA
- \circ 453 ssRNA
- $_{\circ}$ 122 dsRNA
- 806 ssRNA(+)
- 95 ssRNA(-)
- 114 Retrotranscribing viruses
- **1,496 proteomes from cellular organisms** [SUPERFAMILY database]
 - 114 Archaea, 1,062 Bacteria, and 320 Eukarya

- Includes protein domains with low sequence identity (< 15%)</p>
- > Common conserved 3D cores and biochemical properties
- > Homologous as defined by the SCOP evolutionary theory
- More conserved and better suited to study remote relationships

Sharing patterns

4,211 proteomes from cells and viruses 1,993 FSF domains (E < 0.0001)

Spread of viral FSFs in cellular proteomes

f index *

FSF Description	Molecular Function	Detailed Function	Distribution in Viruses	Archaea (/)	Bacteria (/)	Eukarya (/)
Inhibitor of apoptosis (IAP) repeat	Intracellular processes	Cell cycle, Apoptasis	dsDNA, ssRNA(+)	0.00	0.00	0.73
ATP-dependent DNA ligase DNA-binding domain	Regulation	DNA-binding	dsDNA	0.98	0.12	0.99
Ribonuclease H-like	Metabolism	Nucleotide m/tr	dsDNA, ssDNA, ssRNA[-], retrotranscribing	1.00	1.00	1.00
DNA/RNA polymerases	Information	DNA replication/repair	dsDNA, dsRNA, ssRNA(+), ssRNA(-), retrotranscribing	1.00	0.98	1.00
Translation initiation factor 2 beta, alF2beta, N-t	Information	Translation	diDNA	1.00	0.00	1.00
RING/U-box	Information	ONA replication/repair	dsDNA, ssRNA(-)	0.04	0.11	1.00
dUTPase-like	Metabolism	Nucleotide m/tr	dsDNA, retrotranscribing	0.98	0.89	0.91
Nucleic acid-binding proteins	Information	DNA replication/repair	dsDNA, ssDNA	1.00	1.00	1.00
R1 subunit of ribonucleotide reductase, N-termin	r Metabolism	Nucleotide m/tr	dsDNA	0.61	0.78	0.96
DNA ligase/mRNA capping enzyme, catalytic don	r Information	DNA replication/repair	dsDNA	1.00	0.99	1.00
Zinc-binding domain of translation initiation fact	General	Ion binding	dsDNA	1.00	0.00	0.99
P-loop containing nucleoside triphosphate hydro	General	Small molecule binding	(dsDNA, ssDNA, dsRNA, ssRNA(+)	1.00	1.00	1.00
Ferritin-like	Intracellular processes	ion m/tr	dsDNA	0.99	0.99	1.00
PFL-like glycyl radical enzymes	Metabolism	Other enzymes	dsDNA	1.00	0.98	0.98
Protein kinase-like (PK-like)	Regulation	Kinases/phosphatases	dsDNA, dsRNA, netrotranscribing	1.00	0.96	1.00
Cytidine deaminase-like	Metabolism	Other enzymes	diDNA	0.96	0.99	1.00
Ribosomal protein SS domain 2-like	Information	Translation	dsDNA	1.00	1.00	1.00
Cryptochrome/photolyase FAD-binding domain	General	General	dsDNA	0.32	0.53	0.83
FAD-linked reductases, C-terminal domain	Metabolism	Redox	dsDNA	0.61	0.85	1.00
ADP-ribosylation	Metabolism	Secondary metabolism	dsDNA, ssDNA.	0.47	0.33	0.98
RPB5-like RNA polymerase subunit	Information	Transcription	dsDNA	0.98	0.00	0.93
TNF-like	Extracellular processes	Immune response	dsDNA	0.00	0.05	0.35
GroES-like	Intracellular processes	Protein modification	diDNA	0.80	0.98	1.00
Translation proteins	Information	Translation	diDNA	1.00	1.00	1.00

*Percentage of proteomes encoding an FSF divided by the total number of proteomes (in a relative 0-1 scale)

Biases in functional preferences of viral FSFs

Extracellular processes underrepresented in Archaea Intracellular processes and general metabolism overrepresented in Eukarya

Viruses enhance molecular biodiversity

FSFs shared with viruses are widely distributed in the world of proteomes, especially with ssDNA, dsRNA and ssRNA (-) viruses

67 virus-specific FSFs

- Three times more abundant than Archaea-specific FSFs
- Under-represented (HGT and sampling biases)
- Harbor pathogenic and immunological roles
- Include major viral capsid proteins
- Interesting drug targets
- Present in all six viral subgroups
- Could not have originated in cells!

Virus-host relationships and FSF sharing

While viruses do not cross superkingdom barriers and have specific host preferences, they harbor a common structural core

Loss of viral lineages in Archaea and Bacteria?
Late appearance of RNA viruses?

Caetano-Anollés 2014©

34 FSFs common to viruses associated with the three superkingdoms

1	FSF Description	Molecular Function	Detailed Function	Distribution	A(f) \$(n I	00
2	Ribonuclease H-like	Metabolism	Nucleotide m/tr	dsONA, ssDNA, ssRNA(-), retrotranscribing	1.00 1.0	00 1	1.00
3	ONA/RNA polymerases	information	DNA replication/repair	dsONA, dsRNA, ssRNA(+), ssRNA(-), retrotranscribing	1.00 0.5	98 3	1.00
.4	dUTPase-like	Metabolism	Nucleotide m/tr	dsDNA, retrotranscribing	0.98 0.1	89 0	0.91
5	Nucleic acid-binding proteins	Information	DNA replication/repair	diONA, siDNA	1.00 1.0	00 3	1.00
6	P-loop containing nucleoside triphosphate h	General	Small molecule binding	dsDNA, ssDNA, dsRNA, ssRNA(+)	1.00 1.0	00 1	1.00
7	(Phosphotyrosine protein) phosphatases il	Regulation	Kinases/phosphatases	diONA	0.51 0.5	51 3	1.00
- 8	PIN domain-like	Other	Unknown function	diONA	1.00 0.5	99 7	1.00
9	N-terminal nucleophile aminohydrolases (Nt	Metabolism	Other enzymes	acha All viral around	1.0		00
10	Chaperone J-domain	Intracellular processes	Protein modification	eona All viral groups	0.4		20
11	Putative DNA-binding domain	Regulation	DNA-binding	diONA	1.0	Л	99
12	Winged helix DNA binding domain	Regulation	ONA-binding	dsONA	1.0		00
13	Uracil-ONA glycosylase-like	Information	DNA replication/repair	diONA	1.0	5	99
14	Nucleotide-diphospho-sugar transferases	Metabolism	Transferases	dsONA, dsRNA	1.0	~	90
15	vWA-like	Extracellular processes	Cell adhesion	diONA	0.9	0	00
16	5-adenosyl-L-methionine-dependent methylt	Metabolism	Transferases	dsONA, dsRNA, ssRNA(+)	1.0		90
17	Thioredoxin-like	Metabolism	Redox	diONA	0.9		00
1.8	ONA clamp	information	DNA replication/repair	(BONA	1.0		00
19	Metallo-dependent phosphatases	intracellular processes	Proteases	dsDNA viruses:	1.0		00
20	ONA breaking-rejoining enzymes	information	DNA replication/repair	dsDNA	0.8	\bigcirc	99
21	ATPase domain of HSP90 chaperone/DNA to	Intracellular processes	Protein modification	elona Common	1.0		00
22	Rad51 N-terminal domain-like	Information	DNA replication/repair	(KONA	1.0		83
23	NAD(P)-binding Rossmann-fold domains	General	Small molecule binding	denominator!	1.0	Y	00
24	Radical SAM enzymes	1		dsONA	1.0		00
25	Restriction endonuclease-like	Many FS	SFs are	diONA	1.0	0	00
26	TPR-like			diONA	0.8		00
27	UDP-Glycosyltransferase/glycogen phosphor	sunerfol	ds with	dsONA, dsRNA	1.0		00
28	Thymidylate synthase-complementing protein	Jupenio		diONA	0.5		25
29	Concanavalin A-like lectins/glucanases	contral f	iunctions	diONA, diRNA	0.4	D	00
30	ARM repeat	Central I	unctions	dsONA, ssRNA(+)	0.8		00
31	beta-beta-alpha zinc fingers	Regulation	DNA-binding	diONA	0.3		00
32	Bacterial hemolysins	Metabolism	Other enzymes	dsONA, ssDNA, dsRNA	0.3		43
33	Trypsin-like serine proteases	Intracellular processes	Proteases	dsONA, ssRNA(+)	0.5		97
34	Fibronectin type III	Extracellular processes	Cell adhesion	dsONA	0.25 0.5	51 6	0.99
35	Pectin lyase-like	Metabolism	Polysaccharide m/tr	dsONA, ssRNA(+)	0.68 0.1	72:0	0.89

A possible early origin of dsDNA viruses

dsDNA viruses can be as large as cells

dsDNA viruses harbor the largest number and the most shared FSFs

Subgroup	Total	Unique	ssDNA	retroviruses	dsRNA	ssRNA
dsDNA	587	530	7	11	9	22
ssDNA	14	4	-	0	0	0
retroviruses	27	12	-	-	0	1
dsRNA	28	11	-	-	-	1
ssRNA	68	38	-	-	-	-

Nasir et al. (2014) Frontiers Microbiology 5:194

Rooted tree of proteomes built from an FSF domain census Kim and Caetano-Anollés (2011) *BMC Evol Biol* 11: 140.

Venn taxonomic groups

History of the viral and cellular FSF repertoire

Superkingdom-specific FSFs shared with viruses (AV, BV, and EV) appear after those that are not shared

Extreme reductive tendencies in viruses

Bacteria

Archaea

Diversification of life

Some conclusions

Early cellular origins of viruses

- Viruses originated from proto-cells that coexisted with cellular ancestors ~3.4 Gy ago
- Early origin of virocell lineages by reductive evolution
- Ancient virocells had DNA replicons
- DNA viruses are ancient and monophyletic

Late rise of viral novelties

- Late appearance of capsids and parasitic life cycles
- Viruses enhance cellular molecular diversity
- Early origins of archaeal DNA viruses and spread of novelties to RNA viruses in other superkingdoms

Acknowledgements

Arshan Nasir

Collaborators:

PARIS

Questions

NSF

Kyung Mo Kim (Daejeon) Patrick Forterre (Paris)

Thank you!

